Spinal 5-HT3 receptors facilitate behavioural hypersensitivity induced by elevated calcium channel alpha-2-delta-1 protein.
نویسندگان
چکیده
BACKGROUND Peripheral nerve injury induces up-regulation of the calcium channel alpha-2-delta-1 proteins in the dorsal root ganglia and dorsal spinal cord that correlates with neuropathic pain development. Similar behavioural hypersensitivity was also observed in injury-free transgenic (TG) mice over-expressing the alpha-2-delta-1 proteins in neuronal tissues. To investigate pathways regulating alpha-2-delta-1 protein-mediated behavioural hypersensitivity, we examined whether spinal serotonergic 5-HT3 receptors are involved similarly in the modulation of behavioural hypersensitivity induced by either peripheral nerve injury in a nerve injury model or neuronal alpha-2-delta-1 over-expression in the TG model. METHODS The effects of blocking behavioural hypersensitivity in these two models by intrathecal or systemic injections of 5-HT3 receptor antagonist, ondansetron, were compared. RESULTS Our data indicated that the TG mice displayed similar behavioural hypersensitivities to non-painful mechanical stimulation (tactile allodynia) and painful thermal stimulation (thermal hyperalgesia) as that observed in the nerve injury model. Interestingly, tactile allodynia and thermal hyperalgesia in both models can be blocked similarly by intrathecal, but not systemic, injection of ondansetron. CONCLUSIONS Our data suggest that spinal 5-HT3 receptors are likely to play a role in alpha-2-delta-1-mediated behavioural hypersensitivities through a descending serotonergic facilitation.
منابع مشابه
Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity
Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavalpha2delta1) has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavalpha2delta1 proteins i...
متن کاملInhibition of paclitaxel-induced A-fiber hypersensitization by gabapentin.
Paclitaxel (Taxol) is a widely used chemotherapeutic agent in the treatment of several tumors. However, its use is often associated with the generation of peripheral neuropathic pain expressed as mechanical allodynia and thermal hyperalgesia. The molecular mechanism behind this debilitating side effect is obscure, and efficient drugs for its prevention are required. We sought to clarify the cel...
متن کامل5-HT3 receptor-channels coupled with Na+ influx in human T cells: role in T cell activation.
The study was conducted on a human (Jurkat) T cell line, loaded with a Na+ fluorescent probe, SBFI/AM. Serotonin and an agonist of 5-HT3 receptor-channels, 2-methyl-5HT, evoked Na+ influx, whereas the agonists of other serotonergic receptor subtypes, i.e., 5-HT1A and 5-HT1B receptors, failed to induce Na+ influx in these cells. By using 3H-BRL43694, an agonist of 5-HT3 receptor-channels, we cha...
متن کاملSpinal 5-HT3 receptors mediate descending facilitation and contribute to behavioral hypersensitivity via a reciprocal neuron-glial signaling cascade
BACKGROUND It has been recently recognized that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT3 receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT3 receptor and its contribution to facilitatio...
متن کاملProtective Effects of Gabapentin on Allodynia and α2δ1-Subunit of Voltage-dependent Calcium Channel in Spinal Nerve-Ligated Rats
This study was designed to determine whether early gabapentin treatment has a protective analgesic effect on neuropathic pain and compared its effect to the late treatment in a rat neuropathic model, and as the potential mechanism of protective action, the alpha(2)delta(1)-subunit of the voltage-dependent calcium channel (alpha(2)delta(1)-subunit) was evaluated in both sides of the L5 dorsal ro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European journal of pain
دوره 17 4 شماره
صفحات -
تاریخ انتشار 2013